GCCRN Projects – Clinker Production

Portland cement (PC) technology relies on the composition of raw materials and fuels used during the clinker production process in high-temperature kilns. 

Continuous innovations have already been delivered, such as greater kiln and energy efficiencies, and many compelling projects are in progress. However, with our commitment to deliver net zero, the focus is now on breakthrough technologies such as kiln electrification and AI. 

Core and Partner Projects

Core Projects 

  1. Artificial Intelligence-driven Acceleration of Cement Manufacturing 
  2. Effect of cooling rates on the properties of Portland cement clinker in the presence of minor components (Mg, S, Na, Zn, F, P)
  3. Meta-analysis on the use of electric energy for cement production

Partner Projects

  1. Al uptake in C-S-H and the influence of alkali: experimental determination and thermodynamic modelling 
  2. Characterization and comparison of in-situ exposed and in-lab exposed concrete 
  3. Clay calcination process optimization for production of pozzolans 
  4. Developing iron-rich cement clinker & understanding ferrite for the valorisation & Upcycling of steel slags (FeRICH) 
  5. Effect of minor elements such as Zn on the hydration of Alite and cement 
  6. Improved dissolution kinetics of C3S 
  7. Increased use of solid recovered fuels in the main-firing system 
  8. Low CO2 clinker: From alite to ye’elimite 
  9. Macroscopic Volume Changes of Cement Paste During Sorption Cycles and Mechanical Properties of Cementitious Materials Used in Dentistry 
  10. Nanoscale Investigation of Alumiantes Dissolution 
  11. Nanoscale investigations of C-H, C-S-H and carbonate nucleation and growth 
  12. Nanoscale investigations of nucleation and growth of cement-based materials and carbonation reactions 
  13. OPC clinker reactivity revisited – how to maximise Alite reactivity? 
  14. Process models for kiln pyroprocessing 
  15. Re-evaluation of Cement Soundness using the ASTM C151 Autoclave Expansion Test 
  16. Separate sorption space-temporal structure changes by 1H NMR and Measure water transport in hydrate agglomerates by MRI 
  17. Synthesis of calcium sulfoaluminate-belite cement: A comparative study of hydrothermal-calcination and conventional firing process 
  18. Use of hydrogen in the calciner of rotary kiln plants to reduce CO2 emission 

Scientific Contributors

Core Projects Partners: 

  1. CNRS / SIMaP 
  2. Danish Technological Institute (DTI) 
  3. IIT Delhi 
  4. Politecnico di Milano 
  5. RWTH Aachen University 
  6. University of Sao Paulo 
  7. University of Sheffield

Partner Projects: 

  1. Chiang Mai University 
  2. CNRS / SIMAP 
  3. Danish Technological Institute (DTI) 
  4. École polytechnique fédérale de Lausanne (EPFL) 
  5. FAU GeoZentrum Nordbayern 
  6. Institut des Sciences de la Terre (ISTerre) 
  7. Southeast University 
  8. Swiss Federal Laboratories for Materials Science and Testing (EMPA) 
  9. Technical University of Denmark (DTU) 
  10. University of Aberdeen 
  11. University of Sheffield 
  12. University of Surrey 
  13. University of Toronto 
  14. VDZ 
  15. Vienna University of Technology (TU Wien) 

Article References

2023 

[1] C. Boschmann Käthler, S.L. Poulsen, H.E. Sørensen, U.M. Angst, Investigations of accelerated methods for determination of chloride threshold values for reinforcement corrosion in concrete, Sustain. Resilient Infrastruct. 8 (2023) 197–208. https://doi.org/10.1080/23789689.2021.1905221

[2] D.A. Faux, Ö. Istók, A.A. Rahaman, P.J. Mcdonald, E. Mckiernan, D.F. Brougham, Nuclear spin relaxation in aqueous paramagnetic ion solutions, Phys. Rev. E 107 (2023). https://doi.org/10.1103/PhysRevE.107.054605

[3] F. Becker, F. Goetz-Neunhoeffer, J. Neubauer, Enhanced alite dissolution by CAH10 addition, Cem. Concr. Res. 164 (2023) 107051. https://doi.org/10.1016/J.CEMCONRES.2022.107051

[4] M.M. Rusu, D. Faux, I. Ardelean, Monitoring the Effect of Calcium Nitrate on the Induction Period of Cement Hydration via Low-Field NMR Relaxometry, Molecules 28 (2023). https://doi.org/10.3390/molecules28020476

[5] N. Jiménez Segura, B.L.A. Pichler, C. Hellmich, A Green’s function-based approach to the concentration tensor fields in arbitrary elastic microstructures, Front. Mater. 10 (2023). https://doi.org/10.3389/fmats.2023.1137057

[6] N. Jiménez Segura, B.L.A. Pichler, C. Hellmich, Concentration tensors preserving elastic symmetry of multiphase composites, Mech. Mater. 178 (2023) 104555. https://doi.org/10.1016/J.MECHMAT.2023.104555

[7] N. Jiménez Segura, B.L.A. Pichler, C. Hellmich, Mix-, storage- and temperature-invariant precipitation characteristics in white cement paste, expressed through an NMR-based analytical model, Cem. Concr. Res. 172 (2023) 107237. https://doi.org/10.1016/J.CEMCONRES.2023.107237

[8] P. Dohnalík, C. Hellmich, G. Richard, B.L.A. Pichler, Stiffness and stress fluctuations in dental cement paste: a continuum micromechanics approach, Mech. of Adv. Mater. Struct. 30 (2023) 3332–3350. https://doi.org/10.1080/15376494.2022.2073493

[9] P. Dohnalík, C. Hellmich, G. Richard, B.L.A. Pichler, Strength of a cement-based dental material: Early age testing and first micromechanical modeling at mature age, Front. Bioeng. Biotechnol. 11 (2023). https://doi.org/10.3389/fbioe.2023.1047470

[10] S. Quevedo Parra, M.C. Romano, Decarbonization of cement production by electrification, J. Clean. Prod. 425 (2023) 138913. https://doi.org/10.1016/J.JCLEPRO.2023.138913

[11] W. Abdul, C. Mawalala, A. Pisch, M.N. Bannerman, CaO-SiO2 assessment using 3rd generation CALPHAD models, Cem. Concr. Res. 173 (2023) 107309. https://doi.org/10.1016/J.CEMCONRES.2023.107309

[12] Y. Yan, E. Bernard, G.D. Miron, D. Rentsch, B. Ma, K. Scrivener, B. Lothenbach, Kinetics of Al uptake in synthetic calcium silicate hydrate (C-S-H), Cem. Concr. Res. 172 (2023) 107250. https://doi.org/10.1016/J.CEMCONRES.2023.107250

[13] Z. Casar, A.K. Mohamed, P. Bowen, K. Scrivener, Atomic-Level and Surface Structure of Calcium Silicate Hydrate Nanofoils, J. of Phys. Chem. C 127 (2023) 18652–18661. https://doi.org/10.1021/acs.jpcc.3c03350

2022 

[14] A. Kunhi Mohamed, A. Bouibes, M. Bauchy, Z. Casar, Molecular modelling of cementitious materials: current progress and benefits, RILEM Tech. Lett. 7 (2022) 209–219. https://doi.org/10.21809/rilemtechlett.2022.175

[15] A. Morales-Melgares, Z. Casar, P. Moutzouri, A. Venkatesh, M. Cordova, A. Kunhi Mohamed, K.L. Scrivener, P. Bowen, L. Emsley, Atomic-Level Structure of Zinc-Modified Cementitious Calcium Silicate Hydrate, J. Am. Chem. Soc. 144 (2022) 22915–22924. https://doi.org/10.1021/jacs.2c06749

[16] D.A. Kulik, G.D. Miron, B. Lothenbach, A structurally-consistent CASH+ sublattice solid solution model for fully hydrated C-S-H phases: Thermodynamic basis, methods, and Ca-Si-H2O core sub-model, Cem. Concr. Res. 151 (2022) 106585. https://doi.org/10.1016/J.CEMCONRES.2021.106585

[17] G.D. Miron, D.A. Kulik, B. Lothenbach, Porewater compositions of Portland cement with and without silica fume calculated using the fine-tuned CASH+NK solid solution model, Mater. Struct. 55 (2022). https://doi.org/10.1617/s11527-022-02045-0

[18] G.D. Miron, D.A. Kulik, Y. Yan, J. Tits, B. Lothenbach, Extensions of CASH+ thermodynamic solid solution model for the uptake of alkali metals and alkaline earth metals in C-S-H, Cem. Concr. Res. 152 (2022) 106667. https://doi.org/10.1016/J.CEMCONRES.2021.106667

[19] M. Janota, O. Istok, D.A. Faux, P.J. McDonald, Factors influencing the time dependence of porosity relaxation in cement during sorption: Experimental results from spatially resolved NMR, Cement 8 (2022) 100028. https://doi.org/10.1016/J.CEMENT.2022.100028

[20] M. Valavi, Z. Casar, A. Kunhi Mohamed, P. Bowen, S. Galmarini, Molecular dynamic simulations of cementitious systems using a newly developed force field suite ERICA FF, Cem. Concr. Res. 154 (2022) 106712. https://doi.org/10.1016/J.CEMCONRES.2022.106712

[21] N. Jiménez Segura, B.L.A. Pichler, C. Hellmich, Stress average rule derived through the principle of virtual power, ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik 102 (2022). https://doi.org/10.1002/zamm.202200091

[22] R. Kogon, D. Faux, 3TM: Software for the 3-Tau Model, SoftwareX 17 (2022) 100979. https://doi.org/10.5281/zenodo.5774107

[23] S. Barzgar, Y. Yan, M. Tarik, J. Skibsted, C. Ludwig, B. Lothenbach, A long-term study on structural changes in calcium aluminate silicate hydrates, Mater. Struct. 55 (2022). https://doi.org/10.1617/s11527-022-02080-x

[24] S. Fjendbo, H.E. Sørensen, K. De Weerdt, U.H. Jakobsen, M.R. Geiker, Correlating the development of chloride profiles and microstructural changes in marine concrete up to ten years, Cem. Concr. Compos. 131 (2022) 104590. https://doi.org/10.1016/J.CEMCONCOMP.2022.104590

[25] S. Fjendbo, K. De Weerdt, H.E. Sørensen, M.R. Geiker, When and How Should Chloride Profiles be Calibrated for Paste Fraction?, Nordic Concrete Research 66 (2022) 1–18. https://doi.org/10.2478/ncr-2021-0021

[26] Y. Yan, B. Ma, G.D. Miron, D.A. Kulik, K. Scrivener, B. Lothenbach, Al uptake in calcium silicate hydrate and the effect of alkali hydroxide, Cem. Concr. Res. 162 (2022) 106957. https://doi.org/10.1016/J.CEMCONRES.2022.106957

[27] Y. Yan, S.Y. Yang, G.D. Miron, I.E. Collings, E. L’Hôpital, J. Skibsted, F. Winnefeld, K. Scrivener, B. Lothenbach, Effect of alkali hydroxide on calcium silicate hydrate (C-S-H), Cem. Concr. Res. 151 (2022) 106636. https://doi.org/10.1016/J.CEMCONRES.2021.106636

2021 

[28] A. Michel, H.E. Sørensen, M.R. Geiker, 5 years of in situ reinforcement corrosion monitoring in the splash and submerged zone of a cracked concrete element, Constr Build Mater 285 (2021) 122923. https://doi.org/10.1016/J.CONBUILDMAT.2021.122923

[29] D.A. Faux, A.A. Rahaman, P.J. McDonald, Water as a Lévy Rotor, Phys Rev Lett 127 (2021). https://doi.org/10.1103/PhysRevLett.127.256001

[30] E. Bernard, Y. Yan, B. Lothenbach, Effective cation exchange capacity of calcium silicate hydrates (C-S-H), Cem Concr Res 143 (2021) 106393. https://doi.org/10.1016/J.CEMCONRES.2021.106393

[31] P. Dohnalík, B.L.A. Pichler, L. Zelaya-Lainez, O. Lahayne, G. Richard, C. Hellmich, Micromechanics of dental cement paste, J Mech Behav Biomed Mater 124 (2021) 104863. https://doi.org/10.1016/J.JMBBM.2021.104863

[32] P.J. McDonald, M.N. Borg, D.A. Faux, Mesoscale modelling of dynamic porosity in cement hydrate gel during a water sorption cycle: A lattice Boltzmann study, Cem Concr Res 146 (2021) 106475. https://doi.org/10.1016/J.CEMCONRES.2021.106475

[33] S. Barzgar, M. Tarik, C. Ludwig, B. Lothenbach, The effect of equilibration time on Al uptake in C-S-H, Cem. Concr. Res. 144 (2021) 106438. https://doi.org/10.1016/J.CEMCONRES.2021.106438

[34] S. Fjendbo, H.E. Sørensen, K. De Weerdt, M.R. Geiker, The square root method for chloride ingress prediction—Applicability and limitations, Materials and Structures/Materiaux et Constructions 54 (2021). https://doi.org/10.1617/s11527-021-01643-8

[35] S.-Y. Yang, Y. Yan, B. Lothenbach, J. Skibsted, Incorporation of Sodium and Aluminum in Cementitious Calcium-Alumino-Silicate-Hydrate C-(A)-S-H Phases Studied by 23Na, 27Al, and 29Si MAS NMR Spectroscopy, The Journal of Physical Chemistry C 125 (2021) 27975–27995. https://doi.org/10.1021/acs.jpcc.1c08419

2020 

[36] H. Kabir, R.D. Hooton, N.J. Popoff, Evaluation of cement soundness using the ASTM C151 autoclave expansion test, Cem. Concr. Res. 136 (2020) 106159. https://doi.org/10.1016/J.CEMCONRES.2020.106159

[37] M. Thala, K. Pimraksa, Low Temperature Cement Synthesis: Calcium Sulfoaluminate-Belite from Industrial Wastes, Int. J. Struct. Civ. Eng. Res. (2020) 41–45. https://doi.org/10.18178/ijscer.9.1.41-45

[38] P.J. McDonald, O. Istok, M. Janota, A.M. Gajewicz-Jaromin, D.A. Faux, Sorption, anomalous water transport and dynamic porosity in cement paste: A spatially localised 1H NMR relaxation study and a proposed mechanism, Cem. Concr. Res. 133 (2020) 106045. https://doi.org/10.1016/J.CEMCONRES.2020.106045

[39] S. Barzgar, B. Lothenbach, M. Tarik, A. Di Giacomo, C. Ludwig, The effect of sodium hydroxide on Al uptake by calcium silicate hydrates (CSH), J. Colloid Interface Sci. 572 (2020) 246–256. https://doi.org/10.1016/J.JCIS.2020.03.057

2019 

[40] D. Faux, R. Kogon, V. Bortolotti, P. McDonald, Advances in the interpretation of frequency-dependent nuclear magnetic resonance measurements from porous material, Molecules 24 (2019). https://doi.org/10.3390/molecules24203688