GCCRN Projects – Cement and Binder including Calcined Clays

Clinker substitutes – or supplementary cementitious materials (SCMs) – are a wide range of both naturally-occurring and industrial byproduct materials that can be used to replace a proportion of the clinker in Portland cement and reduce its carbon footprint and support the circular economy. 

Core and Partner Projects

Core Projects 

  1. A time lapse insight into the rheology of OPC-LS blends 
  2. Characterization of early development of pore solution and structure to understand workability and strength development 
  3. Final clay particle structure and surface charge 
  4. Linking physico‐chemical properties of calcined clay to performance of LC3 

Partner Projects 

  1. Assessing alternative SCM for use in concrete 
  2. Determination of the reactive silica and alumina in multicomponent calcined clays using PONKCS 
  3. Development of Portland composite cement based on flyash and limestone 
  4. Influence of non-clay associated minerals and calcination parameters in the reactivity and rheological behaviour of calcined clays as SCMs 
  5. Low Carbon Magnesium based Binder 
  6. Mechanism of carbonation shrinkage of hardened cement paste 
  7. Modeling of clay calcination particle conversion 
  8. Monte-Carlo based thermodynamic investigation of pore solution properties of concrete containing supplementary / alternative cementitious materials 
  9. Multiscale Mechanics of Limestone Calcined Clay Cement Pastes 
  10. Particle size and morphology optimisation in blended powders 
  11. SCMs reactivity: Advanced methods for new and needed insights 
  12. Study of ettringite formation during Sulfoaluminate cement hydration

Scientific Contributors

Core Projects Partners: 

  1. ESPCI-Paris 
  2. ETH Zurich 
  3. Gustave Eiffel University 
  4. Indian Institute of Technology Delhi 
  5. Instituto Eduardo Torroja – CSIC 
  6. RWTH Aachen University 
  7. Swiss Federal Laboratories for Materials Science and Testing (EMPA) 
  8. University of Bourgogne

Partner Projects: 

  1. Bourgogne University 
  2. Central University at Las Vilas (CULV) 
  3. Instituto Eduardo Torroja – CSIC 
  4. Nagoya University 
  5. National Council for Cement and Building Materials 
  6. Oregon State University 
  7. Swiss Federal Laboratories for Materials Science and Testing (EMPA) 
  8. Technical University of Denmark (DTU) 
  9. Universidad Nacional de Colombia 
  10. Université Gustave Eiffel (UGE) 
  11. Vienna University of Technology (TU Wien)

Article References

2024 

[1] D. Jansen, A. German, D. Ectors, F. Winnefeld, Stacking faults of the hydrous carbonate-containing brucite (HCB) phase in hydrated magnesium carbonate cements, Cem. Concr. Res. 175 (2024) 107371. https://doi.org/10.1016/J.CEMCONRES.2023.107371

[2] M. Dhar, S. Bishnoi, Influence of calcination temperature on the physical and chemical characteristics of kaolinitic clays for use as supplementary cementitious materials, Cem. Concr. Res. 178 (2024) 107464. https://doi.org/10.1016/J.CEMCONRES.2024.107464

2023 

[3] A. German, F. Winnefeld, P. Lura, D. Rentsch, B. Lothenbach, Hydrous carbonate-containing brucite (HCB) in MgO/hydromagnesite blends, Cem. Concr. Res. 173 (2023) 107304. https://doi.org/10.1016/J.CEMCONRES.2023.107304

[4] E. Bernard, B. Lothenbach, A. German, D. Rentsch, F. Winnefeld, Effect of aluminate and carbonate in magnesia silicate cement, Cem. Concr. Compos. 139 (2023) 105010. https://doi.org/10.1016/J.CEMCONCOMP.2023.105010

[5] E. Bernard, H. Nguyen, S. Kawashima, B. Lothenbach, H. Manzano, J. Provis, A. Scott, C. Unluer, F. Winnefeld, P. Kinnunen, MgO-based cements – Current status and opportunities, RILEM Tech. Lett. 8 (2023) 65–78. https://doi.org/10.21809/rilemtechlett.2023.177

[6] F. Kanavaris, M. Vieira, S. Bishnoi, Z. Zhao, W. Wilson, A. Tagnit Hamou, F. Avet, A. Castel, F. Zunino, T. Visalakshi, F. Martirena, S.A. Bernal, M.C.G. Juenger, K. Riding, Standardisation of low clinker cements containing calcined clay and limestone: a review by RILEM TC-282 CCL, Mater. Struct. 56 (2023) 169. https://doi.org/10.1617/s11527-023-02257-y

[7] S. Joseph, Y. Dhandapani, D.A. Geddes, Z. Zhao, S. Bishnoi, M. Vieira, F. Martirena, A. Castel, F. Kanavaris, T. Bansal, K.A. Riding, Mechanical properties of concrete made with calcined clay: a review by RILEM TC-282 CCL, Mater. Struct. 56 (2023) 84. https://doi.org/10.1617/s11527-023-02118-8

[9] T. Matschei, T.R. Muzenda, F. Georget, Influence of clay impurities on the performance of calcined clay-limestone cements, Ce/Papers 6 (2023) 373–381. https://doi.org/https://doi.org/10.1002/cepa.2776

2022 

[9] E. Bernard, B. Lothenbach, D. Rentsch, A. German, F. Winnefeld, Effect of carbonates on the formation of magnesium silicate hydrates, Mater. Struct. 55 (2022). https://doi.org/10.1617/s11527-022-02018-3

[10] F. Winnefeld, A. Leemann, A. German, B. Lothenbach, CO2 storage in cement and concrete by mineral carbonation, Curr. Opin. Green Sustain. Chem. 38 (2022) 100672. https://doi.org/10.1016/J.COGSC.2022.100672

[11] J.F. Garces-Vargas, Y. Díaz-Cardenas, F. Zunino, J. Ribalta-Quesada, K. Scrivener, F. Martirena, The Challenge of Grinding Ternary Blends Containing Calcined Clays and Limestone, Minerals 12 (2022). https://doi.org/10.3390/min12091170

[12] M.B. Diaz-Garcia, Y. Diaz-Cardenas, J. Ribalta-Quesada, F. Martirena-Hernandez, Evaluation of the Shrinkage Produced with the Use of Cements with Pozzolanic Additions in the Production of Concrete, Minerals 12 (2022). https://doi.org/10.3390/min12091175

[13] Y. Dhandapani, S. Joseph, D.A. Geddes, Z. Zhao, P. Boustingorry, S. Bishnoi, M. Vieira, F. Martirena, A. Castel, F. Kanavaris, K.A. Riding, Fresh properties of concrete containing calcined clays: a review by RILEM TC-282 CCL, Mater. Struct. 55 (2022) 151. https://doi.org/10.1617/s11527-022-01971-3

[14] Y. Dhandapani, S. Joseph, S. Bishnoi, W. Kunther, F. Kanavaris, T. Kim, E. Irassar, A. Castel, F. Zunino, A. Machner, V. Talakokula, K.-C. Thienel, W. Wilson, J. Elsen, F. Martirena, M. Santhanam, Durability performance of binary and ternary blended cementitious systems with calcined clay: a RILEM TC 282-CCL, review, Mater. Struct. 55 (2022) 145. https://doi.org/10.1617/s11527-022-01974-0

2021 

[15] F. Zunino, J.F. Martirena Hernandez, K. Scrivener, Limestone Calcined Clay Cements (LC3), ACI Mater. J. 118 (2021). 

[16] M. Sharma, S. Bishnoi, F. Martirena, K. Scrivener, Limestone calcined clay cement and concrete: A state-of-the-art review, Cem. Concr. Res. 149 (2021) 106564. https://doi.org/10.1016/J.CEMCONRES.2021.106564

[17] T. Hanein, K.-C. Thienel, F. Zunino, A.T.M. Marsh, M. Maier, B. Wang, M. Canut, M.C.G. Juenger, M. Ben Haha, F. Avet, A. Parashar, L.A. Al-Jaberi, R.S. Almenares-Reyes, A. Alujas-Diaz, K.L. Scrivener, S.A. Bernal, J.L. Provis, T. Sui, S. Bishnoi, F. Martirena-Hernández, Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL, Mater. Struct. 55 (2021) 3. https://doi.org/10.1617/s11527-021-01807-6

2020 – 2011 

[18] A. Alujas, R. Fernández, R. Quintana, K.L. Scrivener, F. Martirena, Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration, Appl. Clay Sci. 108 (2015) 94–101. https://doi.org/10.1016/J.CLAY.2015.01.028

[19] F. Martirena, R. Almenares, F. Zunino, A. Alujas, K. Scrivener, Color control in industrial clay calcination, RILEM Tech. Lett. 5 (2020) 1–7. https://doi.org/10.21809/RILEMTECHLETT.2020.107

[20] K. Scrivener, F. Martirena, S. Bishnoi, S. Maity, Calcined clay limestone cements (LC3), Cem. Concr. Res. 114 (2018) 49–56. https://doi.org/10.1016/J.CEMCONRES.2017.08.017

[21] L.M. Vizcaíno-Andrés, S. Sánchez-Berriel, S. Damas-Carrera, A. Pérez-Hernández, K.L. Scrivener, J.F. Martirena-Hernández, Industrial trial to produce a low clinker, low carbon cement, Materiales de Construccion 65 (2015) e045. https://doi.org/10.3989/mc.2015.00614

[22] L. Vizcaino, K. Scrivener, A. Alujas, J.F. Martirena Hernandez, M. Antoni, Effect of fineness in clinker-calcined clays-limestone cements, Adv. Cem. Res. 27 (2015) 1–11. https://doi.org/10.1680/adcr.14.00095

[23] M. Antoni, J. Rossen, F. Martirena, K. Scrivener, Cement substitution by a combination of metakaolin and limestone, Cem. Concr. Res. 42 (2012) 1579–1589. https://doi.org/10.1016/J.CEMCONRES.2012.09.006

[24] P. Patel, J.F. Martirena Hernández, A concrete path to sustainability, MRS Bull 38 (2013) 678–679. https://doi.org/10.1557/mrs.2013.213

[25] R. Fernandez, F. Martirena, K.L. Scrivener, The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite, Cem. Concr. Res. 41 (2011) 113–122. https://doi.org/10.1016/J.CEMCONRES.2010.09.013

[26] R.S. Almenares, L.M. Vizcaíno, S. Damas, A. Mathieu, A. Alujas, F. Martirena, Industrial calcination of kaolinitic clays to make reactive pozzolans, Case Studies in Construction Materials 6 (2017) 225–232. https://doi.org/10.1016/J.CSCM.2017.03.005

[27] S. Sánchez Berriel, A. Favier, E. Rosa Domínguez, I.R. Sánchez MacHado, U. Heierli, K. Scrivener, F. Martirena Hernández, G. Habert, Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba, J. Clean. Prod. 124 (2016) 361–369. https://doi.org/10.1016/J.JCLEPRO.2016.02.125

[28] Y. Cancio Díaz, S. Sánchez Berriel, U. Heierli, A.R. Favier, I.R. Sánchez Machado, K.L. Scrivener, J.F. Martirena Hernández, G. Habert, Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies, Dev. Eng. 2 (2017) 82–91. https://doi.org/10.1016/J.DEVENG.2017.06.001